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Abstract
We model the Alzheimer’s disease-related phenotype
response variables observed on irregular time points
in longitudinal Genome-Wide Association Studies as
sparse functional data and propose nonparametric test
procedures to detect functional genotype effects while
controlling the confounding effects of environmen-
tal covariates. Our new functional analysis of covari-
ance tests are based on a seemingly unrelated kernel
smoother, which takes into account the within-subject
temporal correlations, and thus enjoy improved power
over existing functional tests. We show that the proposed
test combined with a uniformly consistent nonparamet-
ric covariance function estimator enjoys the Wilks phe-
nomenon and is minimax most powerful. Data used in
the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative database,
where an application of the proposed test lead to the dis-
covery of new genes that may be related to Alzheimer’s
disease.
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1 INTRODUCTION

Genome-wide association studies, GWAS, have been successfully used to associate diseases
or traits with genetic variants defined by Single Nucleotide Polymorphisms (SNPs) (Visscher
et al., 2017). A commonly used approach is to perform SNP-level hypothesis tests with multiple
comparison adjustments (Fadista et al., 2016). The vast majority of the GWAS literature focuses
on analyzing phenotypes measured at a single time, however, in many aging studies phenotypes
are repeatedly measured over years where the measurement times are irregular and subject spe-
cific. One example of such studies comes from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), where both longitudinal Alzheimer phenotypes and SNP-level genotypes are available
for all subjects. The longitudinal phenotype responses can be naturally modeled as functional
data (Ramsay & Silverman, 2005) and it is of scientific interest to test if the mean phenotype
trajectories differ across different genotypes.

Let Yk,i(t) be the phenotype of the ith subject in the kth genotype group, observed at time t ∈  ,
i = 1, … ,nk, k = 1,… , q, where  is a closed time interval and q is the number of genotypes.
Denote n =

∑q
k=1nk as the total sample size. Suppose Xk,i(t) is a p-dimensional subject-specific

covariate vector which represents confounding environmental effects and can be time dependent.
Denote 𝜇k,i(t) = E

{
Yk,i(t)|Xk,i(t)

}
and assume

g{𝜇k,i(t)} = XT
k,i(t)𝜷 + 𝜃k(t), (1)

where g(⋅) is a known monotonic and differentiable link function, 𝜷 is a p-vector of unknown
coefficients and 𝜃k(⋅) is an unknown smooth function representing the mean trend of the pheno-
type in the kth genotype group. In the ADNI data, one of the most important Alzheimer-related
phenotypes is the hippocampal volume, the decay of which is known to be related to memory loss
(Schuff et al., 2009), and the genotypes are AA, AB, or BB defined by the two alleles of a SNP.

Model (1) is closely related to functional analysis of variance models since the treatment effect
for genotype k is represented by a nonparametric function 𝜃k(t). Some recent literature on func-
tional analysis of variance models under various designs includes (Brumback & Rice, 1998; Zhou
et al., 2010; Xu et al., 2018). Unlike most papers on semiparametric regression problems, which
focus on inference on the parametric component (Wang et al., 2005), the parameter 𝜷 in (1) is
mainly used to control the confounding effects of the covariates, and our primary interest is to
make inference on the functional genotype effects 𝜃k’s. Specifically, we are interested in testing
the following nonparametric hypotheses

H0 ∶ 𝜃1 = · · · = 𝜃q versus H1 ∶ not all 𝜃′ks are the same. (2)

In the ADNI example, a SNP is disease related if 𝜃k(t)’s are different across the genotypes defined
by the SNP.

Most existing work on functional analysis of variance tests consider dense functional data
with Gaussian-type responses, where observations on each curve are made on a dense grid. A
good summary of these methods are provided by Zhang (2013) (Reimherr and Nicolae (2014)
and Huang et al. (2017) also applied similar test procedures in genetic studies. There are a few
common restrictions of these methods. First, their test statistics were based on the integrated
square error rather than the likelihood; second, within-subject temporal correlations were not
taken into account in their test statistics, which leads to loss of statistical power; third, the
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268 ZHU et al.

available asymptotic theories were developed for dense functional data, which lead to 𝜒2 mix-
ture limiting distributions for the test statistics, and are not applicable to sparse longitudinal
data.

Many longitudinal data, observed on irregular time points and with substantial measurement
errors, can be treated as sparse functional data (Yao et al., 2005; Hall et al., 2006; Zhang and
Wang, 2016). Existence of within-subject correlations is a fundamental issue in functional or lon-
gitudinal data analysis, since methods taking into account correlation are generally more efficient
than those do not. There has been a lot of recent work on modeling covariance of longitudinal
data (Fan & Wu, 2008), and improving estimation efficiency of nonparametric regression using
correlation information (Wang et al., 2005). However, these results have not been used to improve
the power of nonparametric tests. In longitudinal GWAS, SNP-level tests are performed for hun-
dreds of thousands of SNPs, and the multiple comparison adjustments often lead to conservative
test results. It is therefore even more critical to improve the power of functional tests in order to
achieve the genome-wide significance level (Liu & Lin, 2017).

More recently, Tang et al. (2016) studied model (1) under a longitudinal clinical trial setting
and proposed a generalized quasi-likelihood ratio (GQLR) test for hypotheses (2). Their test is
an extension of the generalized likelihood ratio test, originally proposed for various nonpara-
metric models on independent data, including the varying coefficient models (Fan et al., 2001;
Li and Liang, 2008) and the additive models (Fan & Jiang, 2005). See González-Manteiga and
Crujeiras (2013) for a comprehensive review of these test procedures. The test proposed by Tang
et al. (2016) is based on the classic kernel estimators, also referred to as “working indepen-
dent” (WI) estimators by Lin and Carroll (2001), and suffers from low statistical power as we
will demonstrate in this paper. When applied to longitudinal GWAS data, the WI test of Tang
et al. (2016) fails to detect many important genes that have already been documented in the
literature.

We propose to estimate model (1) by a profile estimating equation method based on the seem-
ingly unrelated kernel (Wang et al., 2005) and to build a nonparametric test for (2) that takes into
account the within-subject correlation. It is known that the seemingly unrelated kernel leads to
more efficient nonparametric estimators, but so far it has been neither applied to the functional
analysis of variance models nor used to build a nonparametric test. We show the proposed test is
minimax most powerful when the covariance structure is correctly specified and is more power-
ful than existing tests. We provide practical strategies to estimate the within-subject covariance
nonparametrically and a bootstrap procedure to consistently estimate the null distribution of the
test statistic. We also show that the proposed test enjoys a property called the Wilks phenomenon
(Fan et al., 2001), that the null distribution of the test statistic does not depend on the unknown
model parameters. This important property makes it practical to perform functional tests to longi-
tudinal GWAS data, saving us from repeating the bootstrap procedure on hundreds of thousands
of SNPs.

There has also been some recent work applying functional data analysis on the ADNI brain
image data. Wang and Zhu (2017) studied a regression model using the 2-dim magnetic reso-
nance image of the brain as a functional predictor to predict the Alzheimer’s disease (AD) status;
Li et al. (2017) modeled the DTI fractional anisotropy on corpus callosum, a fiber tract in human
brain, as a functional response and regressed it against disease status and other subject-specific
covariates. Both papers considered dense functional data on regular grid points, extracted from a
brain image during one clinic visit, and neither considered genetic information. In contrast, the
data we analyze are longitudinal phenotypes, measured on sparse, irregular time points, which
provide more information on the decline of cognitive functions and thus increase the chance of
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ZHU et al. 269

identifying Alzheimer-related genes. Xu et al. (2014) also proposed SNP-level hypothesis testing
methods for longitudinal GWAS data, but their methods were based on linear mixed models with
strong parametric assumptions. Song et al. (2014) and Chu et al. (2020) also considered simi-
lar models as (1) using spline methods. However, they focused on feature selection rather than
hypothesis testing.

The rest of the paper is organized as follows. In Section 2, we describe the estimation pro-
cedures under both the null and alternative hypotheses. In Section 3, we propose the seemly
unrelated kernel-based functional analysis of covariance test and study its asymptotic properties,
including its asymptotic null distribution, Wilks phenomenon, local power, and its minimax opti-
mality. We discuss some implementation issues in Section 4, including covariance estimation,
bootstrap procedure and its consistency. We then illustrate the proposed methodology by sim-
ulation studies in Section 5, and analyze the ADNI data in Section 6. Finally, some concluding
remarks and discussions are provided in Section 7. Technical proofs and additional data analysis
results are collected in Appendix S1.

2 ESTIMATION PROCEDURE

Although Model (1) is defined in continuum, observations on Yk,i(t) and Xk,i(t) are, in practice,
made on discrete and subject-specific time points. Let Tk,i = (Tk,i1, · · · ,Tk,imk,i )

T be the random
observation time points for subject i with genotype k, where mk,i is the number of repeated mea-
surements. Denote Yk,i = (Yk,i1,… ,Yk,imk,i)

T, 𝝁k,i = (𝜇k,i1,… , 𝜇k,imk,i )
T, Xk,i = (Xk,i1,… ,Xk,imk,i )

T,
where Yk,ij = Yk,i(Tk,ij), 𝜇k,ij = 𝜇k,i(Tk,ij) and Xk,ij = Xk,i(Tk,ij). Define 𝜖k,ij = Yk,ij − 𝜇k,ij, and con-
sider 𝝐k,i = (𝜖k,i1,… , 𝜖k,imk,i)

T as discrete observations on a longitudinal process 𝜖k,i(t).
We assume the conditional covariance of Yk,i(t) is a bivariate function

(t1, t2) = cov
{
𝜖k,i(t1), 𝜖k,i(t2)

}
, for any t1, t2 ∈  . (3)

Note that the assumption of the covariance structures being the same across treatment groups
is common in analysis of variance. Let 𝚺k,i = cov(Yk,i|Xk,i,Tk,i) = {(Tk,ij,Tk,ij′ )}

mk,i
j,j′=1 be the

subject-specific covariance matrices. Since the true covariance function is unknown, the covari-
ance model (t1, t2) adopted in data analysis is commonly referred to as a “working” covariance,
which is subject to misspecification. Historically, a working covariance model is usually assumed
to be a member of a parametric family, such as the Matérn family. Let Vk,i = {(Tk,ij,Tk,ij′ )}

mk,i
j,j′=1

be the “working” covariance matrix for subject (k, i), which is the interpolation of the continu-
ous covariance function on the subject-specific time points. The simplest working covariance is
working independence, that is, 𝚺k,i = Imk,i . It is known that misspecified working covariance can
still lead to consistent but inefficient estimators (Wang et al., 2005). More discussions on covari-
ance modeling and estimation for irregular longitudinal data are provided in Section 4.1. We refer
to the models under the null and alternative hypotheses in (2) as the reduced and full models,
respectively.

2.1 Estimation under both the null and alternative hypotheses

To estimate the full model, we extend the profile kernel estimating equation approach of Wang
et al. (2005) to the multiple treatment group setting. Let K(⋅) be a kernel function, h be the
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270 ZHU et al.

bandwidth, and denote Kh(t) = h−1K(t∕h). Following Wang et al. (2005), let Gk,ij(t) be an mk,i × 2
matrix with the jth row being {1, (Tk,ij − t)∕h} and rest of the entries 0. The full model estimators
are obtained by iterating between the following two steps.

Step 1 (Seemingly unrelated kernel estimator): By Taylor’s expansion, for any Tk,ij in a
neighborhood h of t, 𝜃k(Tij) ≈ 𝛼0 + 𝛼1(Tij − t)∕h, where 𝜶 = (𝛼0, 𝛼1)T = {𝜃k(t), h𝜃(1)k (t)}

T are the
coefficients of the local polynomial. Let ̃𝜃F,k(⋅) be the current estimator of 𝜃k(⋅). For a given 𝜷,
update ̂𝜃F,k(t; 𝜷) by 𝛼0(t; 𝜷), where 𝜶̂ = {𝛼0(t, 𝜷), 𝛼1(t, 𝜷) }T is the solution of

0 =
nk∑

i=1

mk,i∑

j=1
Kh(Tk,ij − t)𝜇(1)k,ij(𝜷,𝜶)G

T
k,ij(t)V

−1
k,i

[
Yk,i − 𝝁∗

{
t,Xk,i,Tk,i, 𝜷,𝜶, ̃𝜃F,k(Tk,i; 𝜷)

}]
. (4)

Here, 𝝁∗
{

t,Xk,i,Tk,i, 𝜷,𝜶, ̃𝜃F,k(Tk,i; 𝜷)
}

is a vector of dimension mk,i with the lth element being

𝜇[XT
k,il𝜷 + I(l = j){𝛼0 + 𝛼1(Tk,ij − t)∕h)} + I(l ≠ j)̃𝜃F,k(Tk,il, 𝜷)]; 𝜇(1)k,ij(𝜷,𝜶) is the first derivative of

the function 𝜇(⋅) = g−1(⋅) evaluated at XT
k,ij𝜷 + 𝛼0 + 𝛼1{(Tk,ij − t)∕h}.

Step 2 (Profile estimating equation): Then ̂𝜷F is updated by solving the estimating equation
pooling all treatment groups together

0 =
q∑

k=1

nk∑

i=1

𝜕𝝁{Xk,i𝜷 + ̂𝜽F,k(Tk,i; 𝜷)}T

𝜕𝜷
V−1

k,i

[
Yk,i − 𝝁

{
Xk,i𝜷 + ̂𝜽F,k(Tk,i; 𝜷)

}]
. (5)

One may use the working independent estimators of Lin and Carroll (2001) as the initial values.
At convergence, denote the final estimators as ̂𝜷F and ̂𝜃F,k(⋅) = ̂

𝜃F,k(⋅ ; ̂𝜷F).
Solving local estimating Equation (4) requires iteratively reweighted least square steps for each

t, but when g(⋅) is the identity link a closed form solution is given by

̂
𝜃F,k(t; 𝜷) = HT

k (t)(Yk −Xk𝜷), (6)

where Yk and Xk are the response vector and the covariate design matrix pooling all
subjects within group k together and HT

k (t) is a linear smoother described in propo-
sition 1 in Lin et al. (2004). Denote vj𝓁

k,i as the (j,𝓁)th element in V−1
k,i , Nk =

∑nk
i=1mk,i,

Tk = {Tk,ij, j = 1,… ,mk,i; i = 1,… ,nk} and Vk = diag(Vk,1, … ,Vk,nk ). Let V
d
k = diag(V−1

k )
be the diagonal matrix containing all diagonal elements in V

−1
k . Define Kwh(t) =

{
∑nk

i=1
∑mk,i

j=1 Kh(Tk,ij − t)vjj
k,i}

−1Kh(Tk − t) as an Nk-vector and Kwh = {Kwh(Tk,i1),… ,

Kwh(Tk,nk ,mk,nk
)} as an Nk × Nk matrix evaluating Kwh(t) on Tk, then Hk(t) =

KT
wh(t){I + (V

−1
k −V

d
k)Kwh}−1V−1

k . By (6), it is easy to see (𝜕̂𝜃F,k∕𝜕𝜷)(t; 𝜷) = −HT
k (t)Xk, and the

solution for (5) is

̂𝜷F =

( q∑

k=1

̃X
T
k V

−1
k
̃Xk

)−1 ( q∑

k=1

̃X
T
k V

−1
k
̃Yk

)

, (7)

where ̃Xk = (I −Hk)Xk, ̃Yk = (I −Hk)Yk, and Hk is the matrix evaluating Hk(⋅) at Tk.
The reduced model estimators, ̂𝜷R and ̂𝜃R(t), can be estimated by the same procedure assigning

all subject into the same group.

 14679469, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12583 by U

niversity O
f C

alifornia, San, W
iley O

nline L
ibrary on [01/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHU et al. 271

2.2 Asymptotic properties of the estimators

We first investigate the asymptotic properties of the profile-kernel estimators of 𝜷 and 𝜃k(t) under
both the full and reduced models. Denote the true parameters as 𝜷0 and 𝜃k0(t), k = 1,… , q. For
ease of exposition, we assume mk,i = m < ∞ for all k and i. For situations where the numbers of
repeated measurements are unequal, a common practice is to model mk,i as independent real-
izations of a positive random variable m, and essentially the same results can be derived. We
assume that the observation times Tk,ij are independent random variables on a compact inter-
val  , with a density f (t) > 0 for all t ∈  , and there exist constants 0 < 𝜌1,… , 𝜌q < 1 such that
∑q

k=1𝜌k = 1 and nk∕n − 𝜌k = Op(n−1∕2). In an observational study such as the ADNI, suppose the
subjects are random samples from a target population, 𝜌k is the population portion of genotype
k, then (n1,… ,nq) follows a multinomial distribution, E(nk∕n − 𝜌k)2 = 𝜌k(1 − 𝜌k)∕n and hence
the assumption nk∕n − 𝜌k = Op(n−1∕2) is satisfied.

Under our framework, the true and working covariance matrices𝚺k,i and Vk,i are independent
realizations of random matrices 𝚺k and Vk, respectively, because they are the same covariance
functions and  interpolated on independent and identically distributed time vectors Tk,i. Sim-
ilarly, 𝚫k,i = diag{𝜇(1)k,ij}

m
j=1 are independent copies of the random matrix 𝚫k. Denote 𝜎k,j𝓁 , vj𝓁

k and
Δk,j𝓁 as the (j,𝓁)th element in 𝚺k, V−1

k and 𝚫k, respectively. When the response variables are
non-Gaussian,𝚺k, Vk and𝚫k depend on the mean structure and hence might be different between
treatment groups. Under the null hypothesis in (2), however, all groups are identical and 𝚺k ≡ 𝚺,
Vk ≡ V and 𝚫k ≡ 𝚫 for all k. In addition, we make the following assumptions.

(C1) Assume that 𝜃k0(⋅), k = 1, · · · , q, are twice continuously differentiable on  . Define B1k(t) =∑m
j=1E[Δ2

k,jjv
jj
k|Tk,1j = t]f (t) and B1(t) =

∑q
k=1𝜌kB1k(t), and assume these functions are Lips-

chitz continuous.
(C2) The kernel function K(⋅) is a symmetric continuous probability density function on [−1, 1]

with ∫ K(t)t2dt = 1 and 𝜈K = ∫ K2(t)dt <∞.
(C3) Assume h → 0 as n → ∞, such that nh8 → 0 and nh∕ log(1∕h) → ∞.

The reduced model under the null hypothesis in (2) is a generalized partially linear model,
the properties of which are studied in Wang et al. (2005) and summarized in the following
proposition.

Proposition 1. Under H0 ∶ 𝜃10(t) = · · · = 𝜃q0(t) ≡ 𝜃0(t) and assumptions above,

̂
𝜃R(t) − 𝜃0(t) =

h2

2
b∗(t) − 𝝋R(t)(̂𝜷R − 𝜷0) +R(t) +R(t)

+ op[h2 + {log(n)∕nh}1∕2 + n−1∕2], (8)

where R(t) = {nB1(t)}−1∑q
k=1
∑nk

i=1
∑m

j=1Kh(Tk,ij − t)𝜇(1)k,ij

{∑m
l=1vjl

k,i𝜖k,il

}
, R(t) = {nB1(t)}−1

×
∑q

k=1
∑nk

i=1
∑m

j=1𝜇
(1)
k,ij{Q1,∗(t,Tk,ij)

∑m
l=1vjl

k,i𝜖k,il + vjj
k,iQ2,∗(t,Tk,ij)𝜖k,ij}, and 𝝋R(t), b∗(t), Q1,∗ and Q2,∗

are defined in Appendix A.1. In addition,

̂𝜷R − 𝜷0 = D−1
R R + op(n−1∕2), (9)

where DR = E(̃X
T𝚫V−1𝚫̃X) , R = n−1∑q

k=1
∑nk

i=1
̃X

T
k,i𝚫k,iV−1

k,i 𝝐k,i and ̃Xk,i = Xk,i − 𝝋R(Tk,i).
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272 ZHU et al.

Adopting similar derivations in the multiple-group setting, we get the asymptotic expansions
of the full model estimators.

Proposition 2. Under the full model and assumptions above,

̂
𝜃F,k(t) − 𝜃k0(t) =

h2

2
bk∗(t) − 𝝋F,k(t)(̂𝜷F − 𝜷0) +F,k(t) +F,k(t)

+ op[h2 + {log(n)∕nh}1∕2 + n−1∕2], (10)

where F,k(t) = {nkB1k(t)}−1∑nk
i=1
∑m

j=1Kh(Tk,ij − t)𝜇(1)k,ij

(∑m
l=1vjl

k,i𝜖k,il

)
, F,k(t) = {nkB1k(t)}−1 ×

∑nk
i=1
∑m

j=1𝜇
(1)
k,ij{Qk1,∗(t,Tk,ij)

∑m
l=1vjl

k,i𝜖k,il + vjj
k,iQk2,∗(t,Tk,ij)𝜖k,ij},and 𝝋F,k(t), bk∗(t), Qk1,∗ and Qk2,∗ are

defined in Appendix A.1. In addition,

̂𝜷F − 𝜷0 = D−1
F F + op(n−1∕2), (11)

where DF =
∑q

k=1𝜌kE(̃X
T
k𝚫kV−1

k 𝚫k̃Xk), F = n−1∑q
k=1
∑nk

i=1
̃X

T
k,i𝚫k,iV−1

k,i 𝝐k,i and ̃Xk,i = Xk,i −
𝝋F,k(Tk,i).

When H0 in (2) holds, the full and reduced models are identical, ̂𝜷F and ̂𝜷R have the same first
order asymptotic expansion and ̂𝜷F − ̂𝜷R = op(n−1∕2).

3 FUNCTIONAL ANALYSIS OF COVARIANCE TEST

3.1 Test procedure and the asymptotic null distribution

We now address the hypothesis testing problem in (2). Our test procedure is based on
quasi-likelihoods (McCullagh & Nelder, 1989), which only require correctly specifying the mean
structure. A quasi-likelihood function  satisfies

𝜕(𝝁,Y)
𝜕𝝁

= V−1(Y − 𝝁),

where Y is the response vector within a subject, 𝝁 = g−1{X𝜷 + 𝜃(T)} is the conditional mean vec-
tor in model (1) and V is the working covariance assumed to be the same as the one used in
estimation. Our proposed test is based on a GQLR test statistic

𝜆n =
q∑

k=1

nk∑

i=1

(
[g−1{Xk,î𝜷F + ̂𝜃F,k(Tk,i)},Yk,i] −[g−1{Xk,î𝜷R + ̂𝜃R(Tk,i)},Yk,i]

)
. (12)

The following theorem provides the asymptotic distribution of 𝜆n under H0, the proof of which
is provided in Appendix A.2.

Theorem 1. Under the assumptions outlined above, further assume

B2(t) =
m∑

j=1
E{Δ2

jj(V
−1𝚺V−1)jj|Tj = t}f (t), (13)
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ZHU et al. 273

is Lipschitz continuous in t, then under the null hypothesis H0 in (2),

𝜎

−1
n {𝜆n − 𝜇n − dn}→ Normal (0, 1) in distribution, as n →∞,

where dn = op(h−1∕2), 𝜇n = (q − 1)h−1{K(0) − 𝜈k∕2} ∫


B2(t)∕B1(t)dt + Op(1), 𝜎

2
n = 2(q − 1)h−1

×𝜛K ∫ B2
2(t)∕B2

1(t)dt + Op(1), 𝜛K = ∫ {K(u) − 1
2

K ∗ K(u) }2du, and K ∗ K(t) = ∫ ∞−∞K(s)K(t − s)ds
is the convolution of the kernel function.

Remark 1. Fan et al. (2001) showed that the generalized likelihood ratio test enjoys a property
called the Wilks phenomenon, that is, the asymptotic distribution of the test statistic under the
null hypothesis does not depend on the value of the unknown parameters. Indeed, when the like-
lihood function is used and correctly specified, this property holds for a wide range of problems.
As shown in Theorem 1, the asymptotic distribution of 𝜆n in our problem, however, depends on
parameters in the true and working covariance structures. Since the working covariance is often
misspecified under longitudinal/ functional data settings, the Wilks phenomenon does not hold
in general for the GQLR test.

Remark 2. Under the special case where the working covariance is equal to the true covariance,
the asymptotic distribution of 𝜆n does not depend on nuisance parameters, as shown in the fol-
lowing corollary, and hence the Wilks phenomenon holds. The issue of consistently estimating
the covariance function is deferred to Section 4.

Corollary 1. Under the setting of Theorem 1, if V = 𝚺,

𝜎

−1
n∗ {𝜆n − 𝜇n∗ − dn∗}→ Normal (0, 1) in distribution, as n →∞,

where dn∗ = op(h−1∕2), 𝜇n∗ = (q − 1)h−1| | {K(0) − 𝜈k∕2}, 𝜎2
n∗ = 2(q − 1)h−1| |𝜛K .

Remark 3. The result in Corollary 1 implies a rescaled version of 𝜆n can be approximated by
a 𝜒2 distribution with a degree of freedom diverging to infinity in the rate of O(h−1). Specif-
ically, rK𝜆n follows an asymptotic 𝜒2 distribution with rK𝜇n∗ degrees of freedom, where rK =

K(0)−𝜈K∕2
∫ {K(t)−0.5K∗K(t)}2dt

.

3.2 Minimax power of the functional analysis of variance test

To study the power of the proposed test, consider a local alternative hypothesis

H1n ∶ 𝜃k(t) = 𝜃0(t) + Skn(t), k = 1,… , q, with
q∑

k=1
𝜌kSkn(t) = 0, (14)

where Skn(t) are twice continuously differentiable functions with supt∈ |Skn(t)| → 0 as n →∞.
The asymptotic distribution of the GQLR test statistic 𝜆n under the local alternative H1n is given
in Theorem 2.

Theorem 2. Under assumptions in Section 3.1 and the local alternative (14), denote 𝜇1n =
1
2

∑q
k=1
∑nk

i=1E{ST
kn(Tk,i)𝚫k,iV−1

k,i𝚫k,iSkn(Tk,i)}, and assume

h × 𝜇1n → CS < ∞. (15)
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274 ZHU et al.

for some constant CS > 0, then

𝜎

−1
1n {𝜆n − 𝜇n − 𝜇1n}→ Normal (0, 1) in distribution, as n → ∞,

where 𝜎2
1n = 𝜎

2
n +

∑q
k=1
∑nk

i=1E{ST
kn(Tk,i)𝚫k,iV−1

k,i𝚺k,iV−1
k,i𝚫k,iSkn(Tk,i)}, and 𝜇n and 𝜎2

n are defined in
Theorem 1.

An approximate level-𝛼 test is to reject the null hypothesis if 𝜆n − 𝜇n > z
𝛼
𝜎n, where z

𝛼
is the

upper 100 × 𝛼 percentile of Normal(0, 1). Define the class of functions

n(𝜚) = [Sn = (S1n,… , Sqn)T ∶
q∑

k=1
𝜌kE{ST

kn(Tk)Δk𝚺−1
k ΔkSkn(Tk)} ≥ 𝜚2],

where 𝜚measures the size of the local signal. As shown in Fan et al. (2001), these nonparametric
tests have nontrivial power for local signals of size 𝜚∗n = n−4∕9 when the bandwidth is h∗n = c∗n−2∕9

for a constant c∗. The rate 𝜚∗n is referred to as the minimax rate (Ingster, 1993). Following similar
arguments, it is easy to show that the class of quasi-likelihood ratio tests proposed in this paper
enjoy the same minimax power rate.

We now want to show that, within the class of proposed tests, the power of the test is minimax
optimal when the working covariance is correctly specified. To simplify our arguments, we focus
on the case where g(⋅) is an identity link and hence Δk = I. Suppose  is a bivariate working
covariance function and Vk,i is the working covariance matrix evaluating  on the observation
times Tk,i. For a local signal Sn = (S1n,… , Sqn)T ∈ n(𝜚∗n) and bandwidth chosen at h∗n, we have
𝜎

2
1n = 𝜎

2
n × {1 + op(1)} and the Type II error of the test based on working covariance  is

P{𝜆n − 𝜇n < z
𝛼
𝜎n} = 𝛼(Sn,) + op(1), (16)

where 
𝛼
(Sn,) = Φ(z𝛼 − 𝜎−1

n 𝜇1n) with Φ(⋅) being the cumulative distribution function of
Normal(0, 1). The minimax optimality of our test under correctly specified working covariance is
shown in the following theorem, the proof of which is in Appendix A.4.

Theorem 3. Under assumptions of Theorem 2 and identity link, with bandwidth chosen at h∗ =
c∗n−2∕9 for a constant c∗,

min


max
Sn∈n(𝜚∗n)


𝛼
(Sn,) = max

Sn∈n(𝜚∗n)

𝛼
(Sn,),

where is the true covariance as described in (3).

Theorem 3 implies that, among all working covariance models, the maximum asymptotic Type
II error is minimized when the true covariance function is used. Since the working independent
test advocated by Tang et al. (2016) is a special case of our test with V = 𝚺d, where𝚺d is a diagonal
matrix with correctly specified variance on the diagonal, our test is more powerful than that of
Tang et al. (2016) in the minimax sense.

Remark 4. Theorem 3 also implies that, in order to enjoy the minimax optimal power, some
degree of undersmoothing is needed. It is well-known that cross-validation estimates the opti-
mal bandwidth for estimation, which is of order n−1∕5 (Xia & Li, 2002). To make the bandwidth
follow the optimal order n−2∕9 for hypothesis testing, we propose to multiply the cross-validated
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ZHU et al. 275

bandwidth by a factor n−1∕45. As shown in the empirical studies of Fan and Jiang (2005), the
hypothesis test results are quite robust against the choice of h as long as it is in the right order.

4 IMPLEMENTATION ISSUES

4.1 Covariance estimation

Theorem 3 stresses the importance of correctly specifying the within-subject covariance structure
in order to achieve the optimal power. Wang et al. (2005) limited their discussions to parametric
covariance structures. Since then, there have been a lot of new developments on semiparametric
and nonparametric covariance estimation methods, that can more flexibly model covariance func-
tions of longitudinal data with irregular time. We now briefly describe two mainstream methods,
the performance of which will be further evaluated in our simulation studies.

Fan and Wu (2008) proposed a semiparametric model for via the decomposition(t1, t2) =
𝜎(t1)𝜎(t2)𝜌(t1, t2; 𝜸), where 𝜎2(t) is a nonparametric variance function and 𝜌(⋅, ⋅) is a correlation
function from a known parametric family with parameter 𝜸. An example of parametric correlation
function is the ARMA(1, 1) correlation

𝜌(s, t; 𝜸) = 𝛾1 exp(−|s − t|∕𝛾2)I(s ≠ t) + I(s = t), (17)

which is also a member of the Matérn family with a nugget effect. They proposed to estimate
variance function by a kernel estimator 𝜎2(t) smoothing the squared residuals of a pilot fit, and
then estimate the correlation parameter 𝜸 using a quasi-maximum likelihood estimator (QMLE)

𝜸̂ = argmax𝜸 −
1
2

q∑

k=1

nk∑

i=1

{
log |Vk,i(𝛾)| + (Yk,i − 𝝁k,i)TV−1

k,i (𝛾)(Yk,i − 𝝁k,i)
}
, (18)

where 𝝁k,i are substituted by consistent pilot estimators (e.g. the working indepen-
dent estimators), Vk,i(𝛾) is a within-subject covariance matrix with the (j, j′)th entry
𝜎(Tk,ij)𝜎(Tk,ij′ )𝜌(Tk,ij,Tk,ij′ ; 𝜸). When the parametric model on 𝜌 is correctly specified, Fan and
Wu (2008) showed that 𝜸̂ in (18) is root-n consistent, and hence estimator of the covariance
function  is uniformly consistent. However, as shown in Li (2011), a misspecified model on 𝜌
can lead to loss of statistical efficiency.

An alternative method is to model the covariance function nonparametrically, which is the
mainstream method in functional data analysis (Li & Hsing, 2010; Yao et al., 2005; Zhang &
Wang, 2016). We assume (t1, t2) = 0(t1, t2) + 𝜎2

nug(t1)I(t1 = t2), where 0(t1, t2) is a smooth,
positive semi-definite, bivariate function and 𝜎2

nug(t) is the nugget effect representing the vari-
ance function of measurement errors. Both the smooth covariance 0(t1, t2) and the marginal
variance 𝜎

2(t) = 0(t, t) + 𝜎2
nug(t) can be estimated using kernel smoothing on the residuals

from a pilot fit of the full model. We refer the readers to Li (2011) for detailed algorithms
on nonparametric covariance estimation. We then interpolate the estimated covariance func-
tion on the subject-specific observation times to get the within-subject covariance matrices
̂𝚺k,i = {̂0(Tk,ij,Tk,ij′ )I(j ≠ j′) + 𝜎2(Tk,ij)I(j = j′)}mk,i

j,j′=1. Following the arguments in Li (2011), the
estimated covariance ̂(t1, t2) is uniformly consistent to the true covariance on  2, and, by
substituting V with ̂𝚺, the proposed GQLR test has the optimal asymptotic power as if the true
covariance is known.
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276 ZHU et al.

4.2 Evaluating the null distribution with bootstrap

As demonstrated by Mammen (1993), the null distribution of a nonparametric test statistic
converges to its limit very slowly; under a moderate sample size, resampling methods are
recommended to evaluate the distribution of 𝜆n. We extend the wild bootstrap procedure of
Mammen (1993) to our longitudinal/ functional data setting:

Step 1. Obtain a pilot fit of the full model assuming working independence, and estimate the
variance and covariance functions from the residuals, using a method described in Section 4.1.

Step 2. Estimate both the full and reduced models using the seemingly unrelated kernel profile
estimators described in Section 2, substituting Vk,i with estimated covariance ̂𝚺k,i, and evaluate
the test statistic 𝜆n.

Step 3. For the bth bootstrap sample, regenerate the response from the reduced model Yb
k,i =

g−1{XT
k,i
̂𝜷R + ̂

𝜃R(Tk,i)} + 𝝐b
k,i, where 𝝐b

k,i = 𝜔k,i𝝐k,i, 𝝐k,i’s are the full model residuals obtained from
Step 2 the and𝜔k,i’s are independent Rademacher variables with P(𝜔k,i = 1) = P(𝜔k,i = −1) = 0.5.
Step 4. Calculate the test statistic 𝜆b

n from the bootstrap samples {Yb
k,i,Xk,i,Tk,i} using the same

procedure as for the original data, and repeat the bootstrap a large number B times.
Step 5. The estimated p-value is the percentage of 𝜆b

n that are greater than 𝜆n.

Note that in Step 3 we preserve the within-subject covariance structure by multiplying the
residuals within a subject with the same perturbation factor. The following theorem establishes
the consistency of our bootstrap procedure by showing that, conditioning on observed data
 =

{
(Xk,i,Tk,i)

}
, the bootstrap test statistic 𝜆∗n follows the same asymptotic distribution as 𝜆n in

Theorem 1. The proof of Theorem 4 is relegated to Appendix A.5.
Theorem 4. Under the same assumptions for Theorem 1,

P
[
𝜎

−1
n {𝜆∗n − 𝜇n − dn} < x|

]
→ Φ(x) in probability for all x,

where 𝜎n, 𝜇n, and dn are the same as defined in Theorem 1.

Remark 5. The bootstrap procedure proposed above is applicable to test a single hypothesis. We
encounter two technical difficulties when applying this procedure to multiple hypotheses testing
in GWAS data. First, it is computationally infeasible to run bootstrap for hundreds of thousands
of SNPs. Second, it requires a gigantic bootstrap sample to reach genome-wide significance levels
10−7 (Fadista et al., 2016; Huang et al., 2017). To overcome these difficulties, we evoke the Wilk’s
phenomenon described in Corollary 1, which implies that the null distribution of the proposed
functional analysis of variance test is the same for all SNPs. We can perform the proposed wild
bootstrap procedure on some randomly selected SNPs, fit a𝜒2 distribution to the bootstrap sample
using maximum likelihood estimation, and use the fitted𝜒2 distribution to determine the p-values
for all SNPs.

5 SIMULATION STUDIES

5.1 Null distribution and Wilks phenomenon

We use simulations to demonstrate the proposed methods and validate the theoretical findings,
especially the Wilks phenomenon under the null hypothesis. We generate data from q = 4 treat-
ment groups with nk = 50 subjects in each group and m = 5 repeated measurements per subject.
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ZHU et al. 277

The responses are generated as Yk,ij = X1,k,ij𝛽1 + X2,k,i𝛽2 + 𝜃k(Tk,ij) + 𝜖k,ij, where Tk,ij ∼ Unif(0, 1),
X1,k,ij = Tk,ij + Uk,ij is a time varying covariate with Uk,ij ∼ Unif(−1, 1), and X2,k,i is a binary,
time-invariant covariate that equals 0 or 1 with probability 0.5.

We examine the behavior of the proposed test under the null hypothesis 𝜃k(t) ≡ 𝜃0(t) for all k,
and consider the following three scenarios with different settings of 𝜷 and 𝜃0:

Scenario I: 𝛽1 = 1, 𝛽2 = 1, 𝜃0(t) = sin(2𝜋t);
Scenario II: 𝛽1 = 1, 𝛽2 = −1, 𝜃0(t) = sin(2𝜋t);
Scenario III: 𝛽1 = −1, 𝛽2 = 1, 𝜃0(t) = cos(2𝜋t).

We generate the errors 𝜖k,ij as discrete observations on a zero-mean Gaussian process 𝜖k,i(t)
and consider two covariance settings: (i) ARMA(1,1) covariance with 𝜎

2(t) = 0.5 and correla-
tion (17) with 𝛾 = 0.75 and 𝜈 = 1; (ii) a nonparametric covariance induced by the mixed model
𝜖k,ij = 𝜉0,k,ij +

∑3
l=1𝜉l,k,i𝜙l(Tk,ij), where 𝜉0,k,ij, 𝜉l,k,i ∼ N(0, 0.3) are independent random effects and

𝜙1(t) = t2 + 0.5, 𝜙2(t) = sin(3𝜋t), 𝜙3(t) = cos(3𝜋t). Note that the covariance under setting (ii) can
be written as (t1, t2) =

∑3
l=1𝜔l𝜙l(t1)𝜙l(t2) + 𝜎2

nuggI(t1 = t2), which is nonstationary and cannot
be represented by any “off-the-shelf” parametric covariance model, such as those in the Matérn
family.

For each combination of mean and covariance settings, we generate 200 datasets and apply
the proposed estimation and test procedures. For covariance estimation, we apply both methods
described in Section 4.1 for comparison: the semiparametric QMLE (Fan & Wu, 2008) assuming
that the correlation is from the ARMA (1,1) family and the nonparametric covariance estima-
tion method. The bandwidths are selected by the procedure described in Remark 4 using small
scale simulations and are then held fixed for massive simulations. For the test statistic, we use a
Gaussian quasi-likelihood(𝝁,Y) = −(Y − 𝝁)TV−1(Y − 𝝁)∕2, where V is replaced with estimated
covariance.

Figure 1 shows the estimated density for 𝜆 using kernel smoothing, under various mean and
covariance settings and using different covariance estimators. The top two panels show results
under covariance setting (i) where the true covariance is a member of the ARMA (1,1) family,
and the bottom panels correspond to covariance setting (ii). Panels in the left column are results
using nonparametric covariance estimators and the panels on the right hand side are based on
semiparametric covariance estimators using the QMLE method of Fan and Wu (2008).

In all four panels, the null distributions under the three scenarios are almost identical, which
corroborates our results in Theorem 1 that the null distribution does not depend on the true values
of 𝜷 and 𝜃0(t). Under setting (i), both covariance estimators consistently estimate the true covari-
ance function, and all densities in Panels (a) and (b) are almost identical, which corroborates our
results in Corollary 1 that, when the true covariance is used, the test enjoys the Wilks property
and the null distribution does not depend on the values of the nuisance parameters. In Figure S1,
we overlay the six curves in Panels (a) and (b) together, which clearly shows that they are very
close. We also perform a k-sample Anderson–Darling test which finds no significant difference
between the six distributions.

Under setting (ii), the semiparametric covariance estimator uses a misspecified covariance
structure. As a result, the densities in Panel (d) are different from those in Panel (c), which is con-
firmed by the k-sample Anderson–Darling test. This difference shows more clearly in Figure S2
where we overlay the two groups of curves in a single plot. This result also agrees with Theorem 1
that the distribution of 𝜆 depends on the working covariance, should it be misspecified.
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278 ZHU et al.

F I G U R E 1 Estimated densities for 𝜆 under different settings and scenarios. Panels (a) and (b) are results
under covariance setting (i) where the true covariance is ARMA(1,1); Panels (c) and (d) are under setting (ii)
where the errors were generated from a mixed model with nonparametric factors. Panels (a) and (c) are based on
nonparametric covariance estimator; Panels (b) and (d) are based on quasi-maximum likelihood (QMLE)
assuming ARMA(1,1) covariance

5.2 Power of the functional analysis of variance tests

To study the power of the proposed test, we adopt a similar setting as Scenario I in Section 5.1
and generate data from local alternative models with 𝜃1(t) = 𝜃0(t) − 2𝛿S(t), 𝜃2(t) = 𝜃0(t) − 𝛿S(t),
𝜃3(t) = 𝜃0(t) + 𝛿S(t) and 𝜃4(t) = 𝜃0(t) + 2𝛿S(t), where S(t) = sin(6𝜋t). The null hypothesis is true
when 𝛿 = 0 and the model deviates further away from H0 as 𝛿 increases.

We set 𝛿 = {0, 0.05, 0.1, 0.15, 0.2, 0.25}. For each value of 𝛿 and each of the two covariance
settings described in Section 5.1, we simulate 200 datasets and apply the proposed tests based
on seemingly unrelated kernel smoothing under three different covariance structures: working
independence (equivalent to the test of Tang et al., 2016), semiparametric ARMA(1,1) covariance
and nonparametric covariance function estimated by kernel smoothing. For each test, the nom-
inal size is set at 𝛼 = 0.05 and the critical value is estimated by the wild bootstrap procedure in
Section 4.2 based on 1000 bootstrap samples. For comparison, we also adopt the functional F-test
of Zhang (2013) into our setting

F =
∫


∑q
k=1nk{̂𝜃F,k(t) − ̂𝜃R(t)}2dt∕(q − 1)

∫

̂(t, t)dt

,
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ZHU et al. 279

F I G U R E 2 Empirical power of competing test procedures. NP, ARMA, and WI are the proposed
generalized quasi-likelihood ratio test based on different working covariance: nonparametric covariance
estimator, ARMA(1,1) and working independence. F-boot and F-asymp are F-tests based on bootstrap and
asymptotic theory. The horizontal dotted line is set at 0.05. (a) Covariance setting (i) (b) Covariance setting (ii)

where ̂(t, t) is the kernel estimator of the variance function described in Section 4.1. We
implement two versions of the F-test: F-asymp adopts its critical value from the asymptotic F
distribution described in chapter 5 of Zhang (2013), whereas the critical value for F-boot is esti-
mated by the bootstrap procedure described in Section 4.2. The empirical powers as functions of 𝛿
are the five tests as under consideration are shown in Figure 2, where the two panels correspond
to the two true covariance settings.

As we can see, the F-test based on asymptotic F distribution cannot hold its nominal
size: the real size of this test is lower than 0.05 under setting (i) and much higher than
0.05 under setting (ii). These results show that the asymptotic distribution of Zhang (2013)
developed for dense functional data does not apply to sparse longitudinal data. All tests
based on bootstrap hold their nominal size and are therefore legitimate. Among the four
bootstrap-based tests, F-boot is not based on the likelihood principle and is least powerful, fol-
lowed by the working independent version of the proposed test, which ignores the within-subject
correlations.

The two versions of the proposed test considering correlation are most powerful under
both settings. Under setting (i), both the nonparametric and the semiparametric covariance
estimator consistently estimate the true covariance. The two proposed tests based on dif-
ferent covariance estimators have almost identical power curves and both are much higher
than the working independent test. Specifically, at 𝛿 = 0.1, the powers of the two pro-
posed tests are over four times that of the working independent test, indicating a huge
power gain by taking into account of correlations. Under setting (ii), the proposed test
combined with nonparametric covariance estimator has the highest power; the semipara-
metric covariance estimator based on a misspecified correlation model leads to reduced
power, even though the power of this test is still significantly higher than the other
tests.

 14679469, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12583 by U

niversity O
f C

alifornia, San, W
iley O

nline L
ibrary on [01/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



280 ZHU et al.

0.0 0.5 1.0 1.5 2.0

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

log(Year + 1)

H
ip

po
ca

m
pa

l V
ol

um
e

F I G U R E 3 Twenty randomly selected hippocampal volume trajectories from the Alzheimer’s Disease
Neuroimaging Initiative cohort with log-transformed time

6 APPLICATION TO THE ADNI DATA

The AD is an irreversible, progressive brain disorder that affects about 35.6 million people
around the world (Weiner et al., 2013). The ADNI, first launched in 2004 and then renewed
in 2009, is an NIH-funded longitudinal observational study, the goal of which is to develop
biomarkers to detect and track AD. The original ADNI cohort included a total of 800 subjects,
many of whom have repeated measurements on AD-related biomarkers over 10 years of fol-
lowups. More information on ADNI data collection protocol and open data access are available at
http://adni.loni.usc.edu.

Among the biomarkers considered in ADNI, there has been some documented evidence
that loss of hippocampal volume in human brain may be associated with memory loss and AD
(Schuff et al., 2009). In the ADNI cohort, 629 subjects have repeatedly measured hippocam-
pal volume using neuroimaging methods during the 10-year follow-up. The measurement times
are irregular and random, and the number of repeated measures per subject ranges between
2 and 11 with a median of 4. The distribution of observation time is highly skewed and
observations become increasingly sparse after year 6, we therefore take a log-transformation
to time and let t = log(1+actual visit time), which brings the time domain to  = [0, 2.4]. In
Figure 3, we show 20 randomly selected hippocampal volume trajectories in log-transformed
time.

Genotype (AA, AB, or BB) of 311,417 SNPs were measured for the ADNI subjects. Our goal is
to identify the SNPs related to hippocampal volume loss by testing hypothesis (2) for each SNP.
Demographical variables including age, gender, years of education, race, and marital status are
considered as covariates in Model (1). Summary statistics of these covariates are provided in Table
S1 in Appendix S1.
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F I G U R E 4 The empirical distributions (black sold line) and their 𝜒2 approximations (red dashed line) by
the working independent method (the left panel) and nonparametric method (the right panel)

F I G U R E 5 Single nucleotide polymorphisms screening for the Alzheimer’s disease neuroimaging
initiative hippocampal volume data: (a) QQ plot of the p values, (b) the Manhatton plot

We first apply the working independent functional analysis of variance test of Tang et al. (2016)
to screen for the important SNPs. The bandwidth is selected using cross validations on 20 ran-
domly selected SNPs, the average of these selected bandwidths is adjusted by the procedure in
Remark 4 and then fixed for all SNPs. Following the procedure described in Section 4.2, we per-
form wild bootstrap on 20 randomly selected SNPs, with 1000 bootstrap samples for each SNP, and
fit a𝜒2 distribution to the combined bootstrap sample using maximum likelihood estimation. The
left panel of Figure 4 shows the empirical distribution of the combined bootstrap sample for the
working independent test statistic and its 𝜒2 approximation. We then use the fitted 𝜒2 distribu-
tion to evaluate the p-values for all SNPs. At the 10−7 significance level, the working independent
test detects three SNPs associated with hippocampal volume. Following Huang et al. (2017), we
also provide the QQ-plot and the Manhattan plot for the p-values in Figure 5.

Next, we apply the proposed seemingly unrelated functional analysis of variance test to the top
2000 SNPs screened by the working independent test. We adopt the same bandwidth for the mean
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estimation as the working independent procedure, estimate the covariance function separately
for each SNP using the nonparametric procedure described in Section 4.1, where the bandwidth
for covariance estimation is chosen by cross-validation in 20 randomly selected SNPs. To esti-
mate the null distribution, we run wild bootstrap on 20 randomly selected SNPs; the empirical
distributions of rK𝜆

∗
n from the combined bootstrap sample and its 𝜒2 approximation are shown

in the right panel of Figure 4. The closeness of the two distributions corroborates with the results
in Corollary 1. At significance level 10−7, the proposed test detects 177 SNPs that are associated
with hippocampal volume. These SNPs deserve further investigation using independent studies.
We summarize the top 50 SNPs detected by the proposed test in Table S2. The SNPs are ranked
by their significance level. We provide the names of the SNPs, the chromosomes they are on, and
the gene names for SNPs located in known genes.

The most significant SNP is rs2075650 located in gene APOE and some other top genes include
MCF2L, OPCML, TLE1, FAM111A, and ALDH1L1, all of which have been identified by multiple
independent studies to be related to hippocampal volume and AD. References of these genes are
listed in Appendix S1. On the other hand, the proposed method also finds some new genes, such
as LOCI107986777 and KAZN, which we could not find in existing literature and merit further
investigation. Figure S3 in Appendix S1 shows the estimated functional genotype effects for the
top three SNPs, rs2075650, rs2722385, and rs3817959, located in genes APOE, LOCI107986777,
and KAZN, respectively. In each panel of Figure S3, the solid curve is the overall mean func-
tion, while the dashed, dotted and dash-dot curves are the estimated mean functions for different
genotypes.

7 DISCUSSION

In longitudinal GWAS, the main effects of genotypes can be modeled as nonparametric functions
of time. The conservative nature of multiple comparison in GWAS makes it crucial to improve
the power of the SNP level tests. Commonly used kernel estimators do not take into account
the within-subject correlation, which leads to reduced power in statistical tests. Our strategy is
to build our functional analysis of variance test based on the class of seemly unrelated kernel
smoother of Wang et al. (2005), and we show the power of our test is minimax optimal when the
true covariance structure is used. We propose a wild bootstrap procedure to consistently estimate
the null distribution of the test statistic. To perform large-scale multiple hypotheses testing in
longitudinal GWAS, we propose a 𝜒2 approximation to the wild bootstrap samples, which can
be justified by the Wilks property of the proposed test procedure. In our simulation studies, the
proposed test combined with consistent covariance estimators have significant higher power than
the working independent test of Tang et al. (2016) and other competing test procedures. For the
ADNI data, the proposed test detects not only some well-known AD-related genes, which the
working independent test misses, but also some new genes that are worth further investigation. It
is also worth noting, even though our work is motivated by longitudinal GWAS data, the statistical
issues we address, including semiparametric modeling, covariance estimation, and improving
power of nonparametric statistical tests, are generally applicable to all longitudinal data.

Covariance function modeling and estimation play a critical role in our methodology and there
are various way to extend our work. Equation (3) is an equal covariance assumption commonly
used in the analysis of variance literature, where the consensus is that ANOVA test is generally
robust against mild violation of this assumption. In the functional data literature, there has been
some recent work on testing equal covariance functions across different treatment groups (Guo
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et al., 2019); however, their discussion was limited to densely observed function data. It is not yet
clear how their methods can be extended to longitudinal data or sparse functional data. When
the assumption in (3) is seriously violated, the asymptotic 𝜒2 distribution described in Corollary 1
and Remark 3 may no longer hold, a new test taking into account the heterogeneity is necessary,
and further investigation is needed.

The covariance estimation methods described in Section 4.1 are commonly used in functional
data and longitudinal data analysis, when the covariance and the mean functions are not directly
related. However, in some non-Gaussian generalized linear model setting (e.g., Poisson regres-
sion), the variance/covariance structure of the longitudinal process naturally depends on the
mean function. For Poisson type of longitudinal data, Lin (2007) proposed a Poisson Mixed Model,
where the within-subject temporal correlation is accommodated by introducing a few latent Gaus-
sian random effects. If the mean function is modeled by a semiparametric regression model as (1),
the resulting covariance function is similar to the semiparametric covariance model described in
Section 4.1 in the sense that the covariance depends on the semiparametric model in the mean
and a few additional variance parameters of the random effects. For such a model, Lin (2007) pro-
posed to estimate the covariance parameters by maximizing a Gaussian quasi-likelihood similar
to the QMLE loss (18). Other types of non-Gaussian longitudinal data may also be modeled sim-
ilarly through the generalized linear mixed model framework. These possible extensions will be
further pursued in our future work.
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APPENDIX

A.1 Notation
The following are additional notations used in Propositions 1 and 2. Define𝝋F,k(t) as the solution
of the integral equation

m∑

j=1

m∑

l=1
E[Δk,jjvjl

kΔk,ll{Xk,l − 𝝋(Tk,1l)}|Tk,1j = t]f (t) = 0, (A1)

for k = 1,… , q, and 𝝋R(t) the solution of

q∑

k=1
𝜌k

m∑

j=1

m∑

l=1
E[Δk,jjvjl

kΔk,ll{Xk,l − 𝝋(Tk,1l)}|Tk,1j = t]f (t) = 0. (A2)

Define Qk(t, s) =
∑m

j=1
∑

l≠j E
{
Δk,jjvjl

kΔk,llB−1
1k (Tk,1l)|Tk,1j = t,Tk,1l = s

}
f (t)f (s), for k =

1,… , q, and Q(t, s) =
∑q

k=1𝜌kQk(t, s). In addition, define operators

Äk(G; t, s) = −
m∑

j=1

∑

l≠j
E
{
Δk,jjvjl

kΔk,llB−1
1k (Tk,1l)G(Tk,1l, s)|Tk,1j = t

}
f (t),

for any bivariate function G, and Ä(G; t, s) =
∑q

k=1𝜌kÄk(G; t, s).
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Let bk∗(t), Qk1,∗(t) and Qk2,∗(t) be the solutions of integration equations bk∗(t) = 𝜃(2)k0 (t) −

{B1k(t)}−1∑m
j=1
∑

l≠j E
{
Δk,jjvjl

kΔk,llbk∗(Tk,1l)|Tk,1j = t
}

f (t), Qk1,∗(t, s) = −Qk(t, s) + Äk(Qk1,∗; t, s),
and Qk2,∗(t, s) = Äk(Qk2,∗; t, s), respectively. Likewise, b∗, Q1,∗ and Q2,∗ are the solutions of

b∗(t) = 𝜃(2)0 (t) − {B1(t)}−1
q∑

k=1
𝜌k

m∑

j=1

∑

l≠j
E
{
Δk,jjvjl

kΔk,llb∗(Tk,1l)|Tk,1j = t
}

f (t),

Q1,∗(t, s) = −Q(t, s) + Ä(Q1,∗; t, s), and Q2,∗(t, s) = Ä(Q2,∗; t, s), respectively.

A.2 Proof of Theorem 1
For any m-vectors x and y, the first two partial derivatives of {g−1(x), y} regarding x are

𝜕

𝜕x
{g−1(x), y} = 𝚫(x)V−1{g−1(x)}{y − g−1(x)},

𝜕

2

𝜕x𝜕xT {g−1(x), y} = −𝚫(x)V−1{g−1(x)}𝚫(x) +
m∑

j=1
{yj − g−1(xj)}j(x),

where 𝚫(x) = diag{ dg−1

dx
(xj)}m

j=1, j = 𝜕(Vj•𝚫)∕𝜕x, and Vj• is the jth row of V−1. Denote 𝜼0k,i =
Xk,i𝜷0 + 𝜃0(Tk,i), 𝝁0k,i = g−1(𝜼0k,i) and 𝝐k,i = Yk,i − 𝝁0k,i. By taking a Taylor’s expansion at 𝜼0k,i, we
have

[g−1{Xk,î𝜷 + ̂𝜃(Tk,i)},Yk,i]

= [g−1{Xk,i𝜷0 + 𝜃0(Tk,i)},Yk,i] + 𝝐T
k,iV

−1
k,i𝚫k,i{Xk,i(̂𝜷 − 𝜷0) + ̂𝜃(Tk,i) − 𝜃0(Tk,i)}

+ 1
2
{Xk,i(̂𝜷 − 𝜷0) + ̂𝜃(Tk,i) − 𝜃0(Tk,i)}T

{ m∑

j=1
𝜖k,ijk,ij − 𝚫k,iV−1

k,i𝚫k,i

}

× {Xk,i(̂𝜷 − 𝜷0) + ̂𝜃(Tk,i) − 𝜃0(Tk,i)} + O{(n−1∕2 + h2 + n−1∕2h−1∕2)3}.

For any vector a and a symmetric matrix A, define ||a||2A = aTAa.
By the Taylor expansion above, the test statistic can be decomposed into

𝜆n(H0) = J1 + J2 + J3 + J4 + J5 + J6 + op(1), (A3)

where

J1 =
q∑

k=1

nk∑

i=1
𝝐T

k,iV
−1
k,i𝚫k,i{̂𝜃F,k(Tk,i; 𝜷0) − ̂𝜃R(Tk,i; 𝜷0)},

J2 =
q∑

k=1

nk∑

i=1
𝝐T

k,iV
−1
k,i𝚫k,ĩXk,i(̂𝜷F − ̂𝜷R),

J3 =
q∑

k=1

nk∑

i=1

[
(̂𝜷R − 𝜷0)T̃X

T
k,i𝚫k,iV−1

k,i𝚫k,i

{
̂
𝜃R(Tk,i; 𝜷0) − 𝜃0(Tk,i)

}

−(̂𝜷F − 𝜷0)T̃X
T
k,i𝚫k,iV−1

k,i𝚫k,i

{
̂
𝜃F,k(Tk,i) − 𝜃0(Tk,i)

}]
,
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ZHU et al. 287

J4 =
1
2

q∑

k=1

nk∑

i=1

{
||̂𝜃R(Tk,i; 𝜷0) − 𝜃0(Tk,i)||𝚫k,iV−1

k,i𝚫k,i
− ||̂𝜃F,k(Tk,i; 𝜷0) − 𝜃0(Tk,i)||𝚫k,iV−1

k,i𝚫k,i

}
,

J5 =
1
2

q∑

k=1

nk∑

i=1

{

||̂𝜷R − 𝜷0||̃XT
k,i𝚫k,iV−1

k,i𝚫k,ĩXk,i
− ||̂𝜷F − 𝜷0||̃XT

k,i𝚫k,iV−1
k,i𝚫k,ĩXk,i

}

,

J6 =
1
2

q∑

k=1

nk∑

i=1

{

||̃Xk,i(̂𝜷F − 𝜷0) + ̂𝜃F,k(Tk,i; 𝜷0) − 𝜃0(Tk,i)||2∑m
j=1𝜖k,ijk,ij

− ||̃Xk,i(̂𝜷R − 𝜷0) + ̂𝜃R(Tk,i; 𝜷0) − 𝜃0(Tk,i)||2∑m
j=1𝜖k,ijk,ij

}

.

By Lemma 1, J2 + J3 + J5 + J6 = op(h−1∕2), the asymptotic distribution of 𝜆n(H0) follows
directly from the asymptotic distribution of J1 + J4 from Lemma 2.

Lemma 1. Under the null hypothesis and all assumptions in Theorem 1, J2 = op(1), J3 = op(1),
J5 = op(1), J6 = Op(n1∕2h4 + n−1∕2h−1).

Proof. (i) Under and null hypothesis and by the asymptotic expansions in Propositions
1 and 2, ̂𝜷R − 𝜷0 = Op(n−1∕2), ̂𝜷F − 𝜷0 = Op(n−1∕2) and ̂𝜷F − ̂𝜷R = op(n−1∕2). Therefore, J2 ={∑q

k=1
∑nk

i=1𝝐
T
k,iV

−1
k,i𝚫k,ĩXk,i

}
(̂𝜷F − ̂𝜷R) = Op(n1∕2) × op(n−1∕2) = op(1), and

J5 =
q∑

k=1

nk∑

i=1
(̂𝜷R − 𝜷0)̃X

T
k,iΔk,iV−1

k,iΔk,ĩXk,i(̂𝜷R − ̂𝜷F) + (̂𝜷R − ̂𝜷F)̃X
T
k,iΔk,iV−1

k,iΔk,ĩXk,i(̂𝜷F − 𝜷0)

= op(1).

(iii) By similar arguments as on p. 156 of Wang, Carroll and Lin (2005),

q∑

k=1

nk∑

i=1

̃X
T
k,i𝚫k,iV−1

k,i𝚫k,i

{
̂
𝜃R(Tk,i) − 𝜃0(Tk,i)

}
= op(n1∕2),

hence the first term of J3 is of order op(1). By similar arguments, the second term in J3 is of the
same order.

(iv) We decompose J6 into three parts,

J61 =
1
2

q∑

k=1

nk∑

i=1

{

||̃Xk,i(̂𝜷F − 𝜷0)||2∑m
j=1𝜖k,ijk,ij

− ||̃Xk,i(̂𝜷R − 𝜷0)||2∑m
j=1𝜖k,ijk,ij

}

,

J62 =
1
2

q∑

k=1

nk∑

i=1

{

||̂𝜃F,k(Tk,i; 𝜷0) − 𝜃0(Tk,i)||2∑m
j=1𝜖k,ijk,ij

− ||̂𝜃R(Tk,i; 𝜷0) − 𝜃0(Tk,i)||2∑m
j=1𝜖k,ijk,ij

}

,

J63 =
q∑

k=1

nk∑

i=1

[

(̂𝜷F − 𝜷0)T̃X
T
k,i

( m∑

j=1
𝜖k,ijk,ij

)
{
̂
𝜃F,k(Tk,i; 𝜷0) − 𝜃0(Tk,i)

}

−(̂𝜷R − 𝜷0)T̃X
T
k,i

( m∑

j=1
𝜖k,ijk,ij

)
{
̂
𝜃R(Tk,i; 𝜷0) − 𝜃0(Tk,i)

}
]

.

It can easily show that J61 = Op(n−1∕2). By Propositions 1 and 2, under the null hypothesis both
̂
𝜃R(t) − 𝜃0(t) and ̂𝜃F,k(t) − 𝜃0(t) are of order Op(h2 + n−1∕2h−1∕2). Since corr(𝜖k,ij, 𝜖k′,i′j′ ) ≠ 0 only if
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288 ZHU et al.

k = k′ and i = i′, by lengthy moment calculations EJ2
62 = O{n × (h2 + n−1∕2h−1∕2)4}. Therefore, we

conclude J62 = Op(n1∕2h4 + n−1∕2h−1). By similar arguments, we find J63 = Op(h2 + n−1∕2h−1∕2).
Combining the three parts, we have J6 = Op(n1∕2h4 + n−1∕2h−1) = op(1) by condition (C.3). ▪

Lemma 2. Under H0 in (2) and assumptions in Theorem 1,

𝜎

−1
n (J1 + J4 − 𝜇n) → N(0, 1) in distribution,

where 𝜇n and 𝜎2
n are defined in Theorem 1.

Proof. Under the null hypothesis, B1k(t) = B1(t) for k = 1,… , q. Rewrite J1 as

J1 =
q∑

k=1

nk∑

i=1

m∑

j=1

m∑

l=1
𝜖k,ijvjl

k,i𝜇
(1)
k,il{̂𝜃F,k(Tk,il; 𝜷0) − ̂𝜃R(Tk,il)}.

By the asymptotic expansions of ̂𝜃R and ̂𝜃F,k in Propositions 1 and 2, we have J1 = R1 + R2 + R3 +
op(1) where

R1 =
q∑

k=1

nk∑

i=1

m∑

j=1

m∑

l=1
𝜖k,ijvjl

k,i𝜇
(1)
k,ilB

−1
1 (Tk,il)

(
1

nk
− 1

n

)∑

j′

[

Kh(Tk,ij′ − Tk,il)𝜇(1)k,ij′

{
∑

l′
vj′l′

k,i 𝜖k,il′

}]

,

R2 =
q∑

k=1

nk∑

i=1

nk∑

i′≠i

m∑

j=1

m∑

l=1
𝜖k,ijvjl

k,i𝜇
(1)
k,ilB

−1
1 (Tk,il)

(
1

nk
− 1

n

)∑

j′

[

Kh(Tk,i′j′ − Tk,il)𝜇(1)k,i′j′

{
∑

l′
vj′l′

k,i′𝜖k,i′l′

}]

,

R3 = −
q∑

k=1

q∑

k′≠k

nk∑

i=1

n′k∑

i′=1

m∑

j=1

m∑

l=1
𝜖k,ijvjl

k,i𝜇
(1)
k,ilB

−1
1 (Tk,il)

1
n
∑

j′

[

Kh(Tk′,i′j′ − Tk,il)𝜇(1)k′,i′j′

{
∑

l′
vj′l′

k′,i′𝜖k′,i′l′

}]

.

By straightforward moment calculations,

R1 =
q − 1

h
K(0)E

{
B2(T)B−1

1 (T)f
−1(T)

}
+ Op(1).

It is easy to see that R2 and R3 have mean zero and therefore only contribute to the variance of
the test statistic. Similarly, we have

J4 =
1
2

q∑

k=1

nk∑

i=1

[{
̂
𝜃R(Tk,i; 𝜷0) − 𝜃0(Tk,i)

}T
𝚫k,iVk,i𝚫k,i

{
̂
𝜃R(Tk,i; 𝜷0) − ̂𝜃F,k(Tk,i; 𝜷0)

}

+
{
̂
𝜃R(Tk,i; 𝜷0) − ̂𝜃F,k(Tk,i; 𝜷0)

}T
𝚫k,iVk,i𝚫k,i

{
̂
𝜃F,k(Tk,i; 𝜷0) − 𝜃0(Tk,i)

}]

= 1
2

q∑

k=1

nk∑

i=1

m∑

l1,l2=1
𝜇

(1)
k,il1

vl1l2
k,i 𝜇

(1)
k,il2

×

[
h2

2
b∗(Tk,il1 ) + {B1(Tk,il1 )}

−1 1
n

q∑

k1=1

nk1∑

i1=1

m∑

j1=1
Kh(Tk1,i1j1 − Tk,il1 )𝜇

(1)
k1,i1j1

{ m∑

l=1
vj1l

k1,i1
𝜖k1,i1l

}]

×

[

{B1(Tk,il2 )}
−1 1

n

q∑

k2=1

nk2∑

i2=1

m∑

j2=1
Kh(Tk2,i2j2 − Tk,il2 )𝜇

(1)
k2,i2j2

{ m∑

l=1
vj2l

k2,i2
𝜖k2,i2l

}
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ZHU et al. 289

−{B1k(Tk,il2)}
−1 1

nk

nk∑

i2=1

m∑

j2=1
Kh(Tk,i2,j2 − Tk,il2 )𝜇

(1)
k,i2j2

{ m∑

l=1
vj2l

k,i2
𝜖k,i2l

}]

+ 1
2

q∑

k=1

nk∑

i=1

m∑

l1,l2=1
𝜇

(1)
k,il1

vl1l2
k,i 𝜇

(1)
k,il2

×

[
h2

2
bk∗(Tk,il2 ) + {B1k(Tk,il1 )}

−1 1
nk

nk∑

i1=1

m∑

j1=1
Kh(Tk,i1j1 − Tk,il1 )𝜇

(1)
k,i1j1

{ m∑

l=1
vj1l

k,i1
𝜖k,i1l

}]

×

[

{B1(Tk,il2 )}
−1 1

n

q∑

k2=1

nk2∑

i2=1

m∑

j2=1
Kh(Tk2,i2j2 − Tk,il2 )𝜇

(1)
k2,i2j2

{ m∑

l=1
vj2l

k2,i2
𝜖k2,i2l

}

−{B1k(Tk,il2)}
−1 1

nk

nk∑

i2=1

m∑

j2=1
Kh(Tk,i2,j2 − Tk,il2 )𝜇

(1)
k,i2j2

{ m∑

l=1
vj2l

k,i2
𝜖k,i2l

}]

.

A detailed calculation shows that J4 = R4 + R5 + R6 + op(h−1∕2), where

R4 =
1
2

q∑

k=1

nk∑

i=1

m∑

l1=1

m∑

l2=1

𝜇

(1)
k,il1

vl1l2
k,i 𝜇

(1)
k,il2

B1(Tk,il1 )B1(Tk,il2 )

[ q∑

k1

{

I(k1 = k)

(
1

n2 −
1

n2
k

)

+ I(k1 ≠ k) 1
n2

}

×
nk1∑

i1=1

m∑

j1=1

m∑

j2=1

{

Kh(Tk1,i1j1 − Tk,il1)Kh(Tk1,i1j2 − Tk,il2)𝜇
(1)
k1,i1j1

𝜇

(1)
k1,i1j2

×

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k1,i1
𝜖k1,i1l4

)}]

= 1
2nk1

q∑

k1=1

nk1∑

i1=1

m∑

j1=1

m∑

j2=1
𝜇

(1)
k1,i1j1

𝜇

(1)
k1,i1j2

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k1,i1
𝜖k1,i1l4

)

×
q∑

k=1

⎡
⎢
⎢
⎢
⎣

{
I(k1 = k)(𝜌2

k − 1) + I(k1 ≠ k)𝜌k𝜌k1

}

×E
⎧
⎪
⎨
⎪
⎩

m∑

l1=1

m∑

l2=1

𝜇

(1)
k,il1

vl1l2
k,i 𝜇

(1)
k,il2

B1(Tk,il1 )B1(Tk,il2 )
Kh(Tk1,i1j1 − Tk,il1 )Kh(Tk1,i1j2 − Tk,il2 )

⎫
⎪
⎬
⎪
⎭

⎤
⎥
⎥
⎥
⎦

+ Op(1)

= 1
2nk1

q∑

k1=1

nk1∑

i1=1

m∑

j1=1

m∑

j2=1
𝜇

(1)
k1,i1j1

𝜇

(1)
k1,i1j2

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k1,i1
𝜖k1,i1l4

)

×
q∑

k=1

[{

I(k1 = k)(𝜌2
k − 1) + I(k1 ≠ k)𝜌k𝜌k1

×1
h

1
B1(Tk1,i1j1)

{

K ∗ K
(Tk1,i1j2 − Tk1,i1j1

h

)

I(j1 ≠ j2) + 𝜈kI(j1 = j2)
}]

+ Op(1)

= 1
2h

q∑

k1=1

(

𝜌

2
k − 1 +

∑

k≠k1

𝜌k𝜌k1

)

E

[ m∑

j1=1

m∑

j2=1
𝜇

(1)
k1,i1j1

𝜇

(1)
k1,i1j2

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k1,i1
𝜖k1,i1l4

)
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290 ZHU et al.

× 1
B1(Tk1,i1j1)

{

K ∗ K
(Tk1,i1j2 − Tk1,i1j1

h

)

I(j1 ≠ j2) + 𝜈kI(j1 = j2)
}]

+ Op(1)

=
1 − q

2h
𝜈kE

{
B2(T)B1(T)−1f −1(T)

}
+ Op(1),

R5 =
1
2

q∑

k=1

nk∑

i=1

m∑

l1=1

m∑

l2=1

𝜇

(1)
k,il1

vl1l2
k,i 𝜇

(1)
k,il2

B1(Tk,il1 )B1(Tk,il2 )

[ q∑

k1

{

I(k1 = k)( 1
n2 −

1
n2

k

) + I(k1 ≠ k) 1
n2

}

×
nk1∑

i1=1

∑

i2≠i1

m∑

j1=1

m∑

j2=1

{
Kh(Tk1,i1j1 − Tk,il1 )Kh(Tk1,i2j2 − Tk,il2 )𝜇

(1)
k1,i1j1

𝜇

(1)
k1,i2j2

×

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k1,i2
𝜖k1,i2l4

)}]

= 1
2

q∑

k1=1

𝜌k1 − 1
nk1

nk1∑

i1=1

∑

i2≠i1

m∑

j1=1

m∑

j2=1

𝜇

(1)
k1,i1j1

𝜇

(1)
k1,i2j2

B1(Tk1,i1j1)
Kh ∗ Kh(Tk1,i2j2 − Tk1,i1j1)

×

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k1,i2
𝜖k1,i2l4

)

+ Op(1), and

R6 =
1
2

q∑

k=1

nk∑

i=1

m∑

l1=1

m∑

l2=1

𝜇

(1)
k,il1

vl1l2
k,i 𝜇

(1)
k,il2

B1(Tk,il1 )B1(Tk,il2 )

[ q∑

k1

∑

k2≠k1

1
n2

nk1∑

i1=1

nk2∑

i2=1

m∑

j1=1

m∑

j2=1

{

Kh(Tk1,i1j1 − Tk,il1)

×Kh(Tk2,i2j2 − Tk,il2 )𝜇
(1)
k1,i1j1

𝜇

(1)
k2,i2j2

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k2,i2
𝜖k2,i2l4

)}]

= 1
2n

q∑

k1=1

∑

k2≠k1

nk1∑

i1=1

nk2∑

i2=1

m∑

j1=1

m∑

j2=1

𝜇

(1)
k1,i1j1

𝜇

(1)
k2,i2j2

B1(Tk1,i1j1)
Kh ∗ Kh(Tk2,i2j2 − Tk1,i1j1)

×

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k2,i2
𝜖k2,i2l4

)

+ Op(1).

It is easy to see that R4 is the leading term in the mean of J4. R5 and R6 have mean zero and only
contribute to the variance of J4.

We first combine the mean components in J1 and J4 in

𝜇n = R1 + R4 =
q − 1

h

{
K(0) − 𝜈k

2

}
E
{

B2(T)
B1(T)f (T)

}

+ Op(1).

Next, we collect the remaining terms into R2 + R5 + R3 + R6 = Wn + Op(1), where Wn = Wn1 +
Wn2,

Wn1 =
q∑

k1=1

1 − 𝜌k1

nk1

nk1∑

i1=1

∑

i2≠i1

m∑

j1=1

m∑

j2=1

𝜇

(1)
k1,i1j1

𝜇

(1)
k1,i2j2

B1(Tk1,i1j1)

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k1,i2
𝜖k1,i2l4

)

×
{

Kh(Tk1,i2j2 − Tk1,i1j1) −
1
2

Kh ∗ Kh(Tk1,i2j2 − Tk1,i1j1)
}
,
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ZHU et al. 291

and

Wn2 = −
1
n

q∑

k1=1

∑

k2≠k1

nk1∑

i1=1

nk2∑

i2=1

m∑

j1=1

m∑

j2=1

𝜇

(1)
k1,i1j1

𝜇

(1)
k2,i2j2

B1(Tk1,i1j1)

( m∑

l3=1
vj1l3

k1,i1
𝜖k1,i1l3

)( m∑

l4=1
vj2l4

k2,i2
𝜖k2,i2l4

)

×
{

Kh(Tk2,i2j2 − Tk1,i1j1) −
1
2

Kh ∗ Kh(Tk2,i2j2 − Tk1,i1j1)
}
.

It is easy to see Wn1 and Wn2 are uncorrelated to each other, and hence var(Wn) = EW2
n1 + EW2

n2.
Straightforward calculations show that

EW2
n1 =

2
h

q∑

k1

(1 − 𝜌k1)2E

(
B2

2(T)
B2

1(T)f (T)
×
∫

{
K(u) − 1

2
K ∗ K(u)

}2
du

)

+ O(1),

EW2
n2 =

2
h

q∑

k1

q∑

k2≠K1

𝜌k1𝜌k2E

(
B2

2(T)
B2

1(T)f (T)
×
∫

{
K(u) − 1

2
K ∗ K(u)

}2
du

)

+ O(1),

and hence

var(Wn) =
2(q − 1)

h
E

(
B2

2(T)
B2

1(T)f (T)
×
∫

{
K(u) − 1

2
K ∗ K(u)

}2
du

)

+ O(1).

Since J1 + J4 = 𝜇n +Wn + Op(1), the asymptotic distribution in the lemma directly follows
from proposition 3.2 in de Jong (1987). ▪

A.3 Proof of Theorem 2

Lemma 3. Suppose Assumptions (C1)–(C3) and the local alternative described in (14) and (15)
hold, ̂𝜷R is still root-n consistent to 𝜷0, and ̂𝜷F − ̂𝜷R = op(n−1∕2). The nonparametric estimator ̂𝜃R(t)
has the same asymptotic expansion as in (8).

Proof. Under the local alternative hypothesis described in (14) and (15), 𝜃k(t) = 𝜃0(t) + Skn(t)with
Skn(T) = Op(n−1∕2h−1∕2), we have 𝜖k,i(t) = Yk,i(t) − 𝜇k,i(t) = Yk,i(t) − 𝜇{XT

k,i(t)𝜷 + 𝜃k(t)} ≈ Yk,i(t)
− 𝜇{XT

k,i(t)𝜷 + 𝜃0(t)} − 𝜇(1)k,i (t)Skn(t).
For a fixed 𝜷, we derive the asymptotic expansion of profile kernel estimator ̂𝜃R(t; 𝜷) using

similar derivations as in Wang et al., (2005) and get

̂
𝜃R(t; 𝜷) − 𝜃0(t) =

h2

2
b∗(t) +

1
nB1(t)

q∑

k=1

nk∑

i=1

m∑

j=1
Kh(Tk,ij − t)𝜇(1)k,ij

[ m∑

l=1
vjl

k,i{𝜖k,il + 𝜇(1)k,ilSkn(Tk,il)}

]

+ 1
nB1(t)

q∑

k=1

nk∑

i=1

m∑

j=1
𝜇

(1)
k,ij

[

Q1,∗(t,Tk,ij)
m∑

l=1
vjl

k,i{𝜖k,il + 𝜇(1)k,ilSkn(Tk,il)}

+vjj
k,iQ2,∗(t,Tk,ij){𝜖k,ij + 𝜇(1)k,ijSkn(Tk,ij)}

]

− 𝝋R(t)(𝜷 − 𝜷0) + op[h2 + {log(n)∕nh}1∕2 + n−1∕2 + ||𝜷 − 𝜷0||]

= h2

2
b∗(t) +

1
nB1(t)

q∑

k=1

nk∑

i=1

m∑

j=1
Kh(Tk,ij − t)𝜇(1)k,ij

m∑

l=1
vjl

k,i𝜖k,il +R(t) +R(t)
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292 ZHU et al.

+ 1
B1(t)

q∑

k=1
𝜌k

[ m∑

j=1

m∑

l=1
E{Q1,∗(t,Tk,j)Δk,jjvjl

kΔk,llSkn(Tk,l)}

+
m∑

j=1
E{Δ2

k,jjv
jj
kQ2,∗(t,Tk,j)Skn(Tk,j)}

]

− 𝝋R(t)(𝜷 − 𝜷0) + op[h2 + {log(n)∕nh}1∕2 + n−1∕2 + ||𝜷 − 𝜷0||]. (A4)

Since Skn(T) = Op{(nh)−1∕2} and 𝚫k and Vk are continuous functions of 𝜃k, Δk,jj − Δjj =
Op{(nh)−1∕2} and vjl

k − vjl = Op{(nh)−1∕2}. By the assumption
∑

k 𝜌kSkn(t) = 0 for all t, the addi-
tional terms in (A4) are negligible. Therefore, if ̂𝜷R − 𝜷0 = Op(n−1∕2), the expansion of ̂𝜃R(t)
follows directly from (A4) and the leading terms are identical to those in (8).

We next derive the asymptotic expansion of ̂𝜷R under the local alternative. By standard profile
estimator arguments,

̂𝜷R − 𝜷0 = D−1
R 

†
R + op(n1∕2),

where †n = n−1∑q
k=1
∑nk

i=1
̃X

T
k,i𝚫k,iV−1

k,i {𝝐k,i + 𝚫k,iSkn(Tk,i)}. It is easy to see that the additional term
is

n−1
q∑

k=1

nk∑

i=1

̃X
T
k,i𝚫k,iV−1

k,i𝚫k,iSkn(Tk,i) =
q∑

k=1
𝜌kE{̃X

T
k𝚫kV−1

k 𝚫kSkn(Tk)} + Op{n−1∕2 × (nh)−1∕2}

= Op{n−1∕2 × (nh)−1∕2}.

Therefore, ̂𝜷R still have the same leading asymptotic expansion as (9) and is still root-n consistent
to 𝜷0.

By the assumption that Skn(T) = Op{(nh)−1∕2}, k = 1, … , q, we can see that DF −DR = o(1),
and F − †R = o(n−1∕2), and hence ̂𝜷R − ̂𝜷F = op(n−1∕2). ▪

Proof of Theorem 2. The local alternative described in (14) and (15) are close to the null hypoth-
esis, with the size of the local signal Skn(T) = Op{(nh)−1∕2}, k = 1,… , q. By Lemma 3, ̂𝜷R − 𝜷0
= Op(n−1∕2), ̂𝜷F − ̂𝜷R = op(n−1∕2) and ̂𝜃R(t) still has the same asymptotic expansion as in (8).

The test statistic has a similar expansion as in (A3),

𝜆n(H1n) = J†1 + J†2 + J†3 + J†4 + J†5 + J†6 + op(1),

where

J†1 =
q∑

k=1

nk∑

i=1
𝝐T

k,iV
−1
k,i𝚫k,i{̂𝜃F,k(Tk,i; 𝜷0) − ̂𝜃R(Tk,i; 𝜷0)},

J†2 =
q∑

k=1

nk∑

i=1
𝝐T

k,iV
−1
k,i𝚫k,ĩXk,i(̂𝜷F − ̂𝜷R),

J†3 =
q∑

k=1

nk∑

i=1

[
(̂𝜷R − 𝜷0)T̃X

T
k,i𝚫k,iV−1

k,i𝚫k,i

{
̂
𝜃R(Tk,i; 𝜷0) − 𝜃k(Tk,i)

}
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ZHU et al. 293

− (̂𝜷F − 𝜷0)T̃X
T
k,i𝚫k,iV−1

k,i𝚫k,i

{
̂
𝜃F,k(Tk,i; 𝜷0) − 𝜃k(Tk,i)

}]
,

J†4 =
1
2

q∑

k=1

nk∑

i=1

{
||̂𝜃R(Tk,i; 𝜷0) − 𝜃k(Tk,i)||𝚫k,iV−1

k,i𝚫k,i
− ||̂𝜃F,k(Tk,i; 𝜷0) − 𝜃k(Tk,i)||𝚫k,iV−1

k,i𝚫k,i

}
,

J†5 =
1
2

q∑

k=1

nk∑

i=1

{

||̂𝜷R − 𝜷0||̃XT
k,i𝚫k,iV−1

k,i𝚫k,ĩXk,i
− ||̂𝜷F − 𝜷0||̃XT

k,i𝚫k,iV−1
k,i𝚫k,ĩXk,i

}

,

J†6 =
1
2

q∑

k=1

nk∑

i=1

{

||̃Xk,i(̂𝜷F − 𝜷0) + ̂𝜃F,k(Tk,i, 𝜷0) − 𝜃k(Tk,i)||2∑m
j=1𝜖k,ijk,ij

− ||̃Xk,i(̂𝜷R − 𝜷0) + ̂𝜃R(Tk,i, 𝜷0) − 𝜃k(Tk,i)||2∑m
j=1𝜖k,ijk,ij

}

.

By similar calculations in Lemma 1, J†2 + J†3 + J†5 + J†6 = op(h−1∕2), hence J†1 and J†4 are the domi-
nating terms in 𝜆n(H1n).

By straightforward calculations,

J†1 =
q∑

k=1

nk∑

i=1
𝝐T

k,iV
−1
k,i𝚫k,i

{
Skn(Tk,i) +F,k(Tk,i) −R(Tk,i)

}
+ op(h−1∕2)

= J1 + R†1 + op(h−1∕2),

and

J†4 =
1
2

q∑

k=1

nk∑

i=1

{
||̂𝜃R(Tk,i; 𝜷0) − 𝜃0(Tk,i) − Skn(Tk,i)||𝚫k,iV−1

k,i𝚫k,i
− ||̂𝜃F,k(Tk,i; 𝜷0) − 𝜃k(Tk,i)||𝚫k,iV−1

k,i𝚫k,i

}

= J4 + R†2 + R†3 + op(h−1∕2),

where

R†1 =
q∑

k=1

nk∑

i=1
𝝐T

k,iV
−1
k,i𝚫k,iSkn(Tk,i),

R†2 =
1
2

q∑

k=1

nk∑

i=1
ST

kn(Tk,i)𝚫k,iV−1
k,i𝚫k,iSkn(Tk,i),

R†3 = −
q∑

k=1

nk∑

i=1
ST

kn(Tk,i)𝚫k,iV−1
k,i𝚫k,iR(Tk,i).

It can be shown that R†3 = op(h−1∕2) and R†2 = 𝜇1n + op(h−1∕2), therefore

𝜆n(H1n) = 𝜇n + 𝜇1n +Wn + R†1 + op(h−1∕2),

where 𝜇n and Wn are the same as defined in Theorem 1 and Lemma 2. It is easy to see that E(R†1) =
0 and

var(R†1) =
q∑

k=1

nk∑

i=1
E{ST

kn(Tk,i)𝚫k,iV−1
k,i𝚺k,iV−1

k,i𝚫k,iSkn(Tk,i)}.
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294 ZHU et al.

Since R†1 is a linear combination of 𝜖k,ij and Wn only consists of quadratic terms, R†1 and
Wn are uncorrelated and hence asymptotically independent. As a result, var(Wn + R†1) =
var(Wn) + var(R†1) = 𝜎

2
1n, and the asymptotic normal distribution in Theorem 2 follows from de

Jong (1987). ▪

A.4 Proof of Theorem 3
We only need to show, for all working covariance  ,

min
S∈n(𝜚∗n)

∑q
k=1𝜌kE{ST

kn(Tk)V−1
k Skn(Tk)}

{∫


B2
2(t)∕B2

1(t)dt}1∕2
≤ min

S∈n(𝜚∗n)

∑q
k=1𝜌kE{ST

kn(Tk)𝚺−1
k Skn(Tk)}

| |1∕2 , (A5)

where n(𝜚) = {S ∶
∑q

k=1ST
kn(Tk)𝚺−1

k Skn(Tk) = 𝜚2} is the boundary of n(𝜚).
With a change of variable (T) = 𝚺−1∕2S(T)∕𝜚∗n,

(𝜚∗n)−2 min
S∈n(𝜚∗n)

q∑

k=1
𝜌kE{ST

kn(Tk)V−1
k Skn(Tk)} = min

ET(T)(T)=1
E{T(T)𝚺1∕2V−1𝚺1∕2

(T)}

≤ | |−1
∫


𝒜 (t)dt,

where

𝒜 (t) = min


E{T(T)𝚺1∕2V−1𝚺1∕2
(T)|T1 = t}

E{T(T)(T)|T1 = t}

= min


E{T(T)V−1∕2𝚺V−1∕2
(T)|T1 = t}

E{T(T)(T)|T1 = t}
. (A6)

Now, to show (A5), we only need

[
∫


𝒜 (t)dt
]2

≤ | |
∫


[
E{(V−1𝚺V−1)11|T1 = t}

E{(V−1)11|T1 = t}

]2

dt. (A7)

Inequality (A7) can be easily shown by the Cauchy–Schwartz inequality if we can show

𝒜 (t) ≤ E{(V−1𝚺V−1)11|T1 = t}
E{(V−1)11|T1 = t}

for all t ∈  . (A8)

Realizing the right-hand side of (A8) is objective function in (A6) evaluated at  = V−1∕2e1,
where e1 is a m-dim vector with 1 on the first entry and 0 everywhere else, inequality (A8) holds
by the definition of 𝒜 (t) in (A6).

A.5 Proof of Theorem 4
By Proposition 2, ̂𝜷 − 𝜷0 = Op(n−1∕2) and supt∈ |̂𝜃F,k(t) − 𝜃k(t)| = Op[h2 + {log(n)∕nh}1∕2], there-
fore the residuals of the full model satisfy 𝜖k,ij − 𝜖k,ij = Op[h2 + {log(n)∕nh}1∕2] uniformly for all
k, i and j. Denote 𝝐∗k,i = 𝜔k,i𝝐k,i, where P(𝜔k,i = 1) = P(𝜔k,i = −1) = 0.5. Then we have E(𝜖∗k,ij|) =
0 and cov(𝝐∗k,i, 𝝐

∗
k′,i′ |) = 𝝐k,i𝝐

T
k,i if (k, i) = (k′, i′) and 0 otherwise. Thus, the bootstrap sample
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ZHU et al. 295

{
(Y∗

k,ij,Xk,ij,Tk,ij)
}

satisfy model (1) and the null hypothesis H0 with the true parameters 𝜷∗0 = ̂𝜷R

and 𝜃∗0 (⋅) = ̂
𝜃R(⋅).

Using the same arguments in Theorem 1, we can show that 𝜆∗n(H0) = R∗1 + R∗4 +W∗
n +

op(h−1∕2) where R∗1, R∗4 and W∗
n are the same as R1, R4, and Wn in Lemma 2 except that 𝝐k,i

are replaced by 𝝐∗k,i. By similar calculations as in Lemma 2, we have R∗1 + R∗4 = 𝜇n + Op(1) and
var(W∗

n |) = 𝜎2
n × {1 + op(1)}. By proposition 3.2 in de Jong (1987), [𝜆∗n(H0)|] has the same

asymptotic normal distribution as 𝜆n(H0) in Theorem 1 for every event defined on  .
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